HILBERT TRANSFORMS ALONG LIPSCHITZ DIRECTION FIELDS: A LACUNARY MODEL

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bilinear Hilbert Transforms along Curves I. the Monomial Case

We establish an L2×L2 to L estimate for the bilinear Hilbert transform along a curve defined by a monomial. Our proof is closely related to multilinear oscillatory integrals.

متن کامل

Double Hilbert Transforms along Polynomial Surfaces in R3

where P(s, t) is a polynomial in s and t with P(0,0)= 0, and ∇P(0,0)= 0. We call H the (local) double Hilbert transform along the surface (s, t,P (s, t)). The operator may be precisely defined for a Schwartz function f by integrating where ≤ |s| ≤ 1 and η ≤ |t | ≤ 1, and then taking the limit as ,η→ 0. The corresponding 1-parameter problem has been extensively studied (see [RS1], [RS2], and [S]...

متن کامل

A Sharp Estimate for the Hilbert Transform along Finite Order Lacunary Sets of Directions

Let D be a nonnegative integer and Θ ⊂ S1 be a lacunary set of directions of order D. We show that the Lp norms, 1 < p < ∞, of the maximal directional Hilbert transform in the plane HΘ f (x ) B sup v ∈Θ p.v. ∫ R f (x + tv ) dt t , x ∈ R 2, are comparable to (log #Θ) 2 . For vector elds vD with range in a lacunary set of of order D and generated using suitable combinations of truncations of Lips...

متن کامل

Classical Wavelet Transforms over Finite Fields

This article introduces a systematic study for computational aspects of classical wavelet transforms over finite fields using tools from computational harmonic analysis and also theoretical linear algebra. We present a concrete formulation for the Frobenius norm of the classical wavelet transforms over finite fields. It is shown that each vector defined over a finite field can be represented as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematika

سال: 2017

ISSN: 0025-5793,2041-7942

DOI: 10.1112/s0025579316000280